ROUND I: Evaluation of algebraic expressions

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If $\mathrm{x} \& \mathrm{y}=x^{y}+y^{x}$, find the value of $2 \& 3$.
2. Evaluate for $x=3, y=-4, z=2$:

$$
\left|\frac{x z}{y}\right|-\left(-\left|\frac{-y}{z}\right|\right)-x^{2}
$$

3. If $\mathrm{a} * \mathrm{~b}=a^{2}+b^{2}$, evaluate the exact value of $\frac{(a * b)+2 a b}{a+b}$ as a reduced fraction when $\mathrm{a}=\frac{1}{27}$ and $\mathrm{b}=\frac{1}{9}$.

ANSWERS
$(1 \mathrm{pt}) 1$.
(2 pts) 2. \qquad
(3 3 别) 3. \qquad
Bancroft. Doherty. South

ROUND II: Solving linear equations

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Solve for $\mathrm{y}: 2-(4 y+6)+(8 y-10)-(12 y-14)=16$
2. Solve for $\mathrm{x}: \frac{1}{8}(7 x+5)-\frac{1}{10}(3 x+15)=2$
3. Solve $v=c\left(1-\frac{t}{n}\right)$ for t .

ANSWERS
$(1 \mathrm{pt}) 1$.
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Holy Name, Hudson, Westborough

ROUND III: Logic problems

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. K is a 3-digit whole number. Its leftmost digit is the largest possible, considering that it is the difference of the two rightmost digits. Each digit is unique The middle digit is as large as possible and the rightmost digit is as small as possible. Find K.
2. Dave and Sue's mother is pregnant. Dave says "If it's a girl, I'll have twice as many sisters as brothers." His sister Sue says "If it's a boy, I'll have twice as many brothers as sisters." How many children does their mother presently have?
3. On each play of a game any one of $5,4,3,2$, or 0 points can be scored. Find the number of combinations of these scores which yield a total of 30 points in 7 plays.

ANSWERS

$(1 \mathrm{pt}) 1$. \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Bromfield, Hudson, Tahanto

ROUND IV: Number theory

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If the sum of 3 different prime numbers is an even number, what is the smallest of the three?
2. Find the product of the least common multiple and the greatest common factor of 24,30 , and 45.
3. Find the value of digit A if the 5 -digit number 12A3B is to be divisible by both 4 and 9 , with $A \neq B$.

ANSWERS
(1 pt) 1. \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad

Bromfield, Hopedale, South

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND ON THE SEPARATE TEAM ANSWER SHEET
 3 points each

1. Using $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=3, \mathrm{~d}=4, \mathrm{e}=5$, and $\mathrm{f}=6$,
a) evaluate this expression by following the customary order of operations.

- means multiply.

$$
\mathrm{a}+\mathrm{b} \cdot \mathrm{c}-\mathrm{d}+\mathrm{e} \cdot \mathrm{f}
$$

b) evaluate the same expression but by doing each operation in order left to right. Both answers must be right for credit.
2. Solve: $-x-\left\lceil\frac{1}{2}(3 x-1)+\frac{1}{4}\right\rceil=\frac{5 x}{4}-2$
3. A, B, C, and D represent 4 different digits. How many solutions of 3 B
$\frac{+\mathrm{A}}{\mathrm{B}} \frac{+\mathrm{C}}{\mathrm{D} 3}$ are there?
4. In what bases, 3 through 12 inclusive, is 2101 a perfect square in base 10 ?
5. According to medical statistics, the average birth weight of a baby in the U. S. is 7.5 lbs . After birth most babies lose an average of one ounce a day for the first five days and then gain an avarage of one ounce a day for the next 13 weeks. If a baby weighs 7.5 lbs at birth, after how many days will the baby weigh 12 pounds? 1 pound $=16$ ounces.
6. You have 6 coins in your pocket: 2 dimes, 3 quarters, and 1 nickel. What is the probability that you will pick a quarter both times if you pick one coin, return it, and pick again? Assume that each coin is equally likely to be picked each time.
7. All the even numbers from 2 through 98 inclusive, except those ending in 0 , are multiplied together. What is the units digit of the product?
8. A hotly debated issue in the enchanted forest is whether to seed the clouds in order to produce more rain. There is a definite difference of opinion among the various types of trees. The f fee: : . d s.want any vote to be equitable and realize that some types of tross are more numerous than others. The leaders have set up this system: 6 pine tree votes are equal to 9 oak tree votes, 4 beech tree votes $=13$ maple tree votes. and 6 beech tree votes $=8$ pine tree votes. What would be the equation relating maple tree votes and oak tree votes?

Algonquin, Auburn, Bartlett, Bromfield, Quaboag, Shepherd Hill, QSC

ROUND I oval
2. 2 uts -5.5
3. 3 tots $\frac{4}{27}$

TEAM ROUND 3 pts each
la) 33
b) 60
2. $\frac{3}{5}$ or .6
3. 4
4. 3 and $8 \begin{aligned} & \text { need } \\ & \text { both }\end{aligned}$
5. 82 days
6. $\frac{1}{4}$ OR 25%
7. 6
8. $13_{\text {maples }}=8$ oaks

Round I

1. $2<3=2^{3}+3^{2}=8+9=17$
2. $\left|\frac{3 \cdot 2}{-4}\right|-\left(-\left|\frac{4}{2}\right|\right)-9=\frac{3}{2}+2-9=-5 \frac{1}{2}$
3. $\frac{a^{2}+b^{2}+2 a b}{a+6}=\frac{(a+b)^{2}}{a+6}=a+b$
get $\frac{1}{27}+\frac{1}{4}=\frac{4}{27}$
ROUND II
4. $2-4 y-6+8 y-10-12 y+14=16$

$$
-8 y=16 \Rightarrow y=-2
$$

2. Mull by 40 to get

$$
\begin{gathered}
5(7 x+5)-4(3 x+15)=80 \\
35 x+25-12 x-60=80 \\
23 x=115 \Rightarrow x=5
\end{gathered}
$$

3 Molt by n to get

$$
\begin{aligned}
& v_{n}=c(n-t) \\
& v_{n}=c n-c t \\
& c t=c n-v n \\
& t=\frac{c n-v n}{c} \text { or several } \\
& \text { other form }
\end{aligned}
$$

ROUND III

1. $\left.\begin{array}{ll}\text { middle digit is } 9 \\ & \text { rightmost is } 1 \\ \text { leftmost is } 9-1=8\end{array}\right\} \quad \begin{gathered}\text { number is } \\ 891\end{gathered}$

Round III cant.
2. Experiment for a while and find that 3 boys, 3 girls now works.
Hope that this is unique. Ans. 6
or

$$
\left.\begin{array}{l}
\text { If } g, \quad 2(b-1)=g+1 \\
2(g-1)=6+1
\end{array}\right\} \Rightarrow g=6=3
$$

If $b, 2(g-1)=6+1 \quad$ Ans, 6
$3 \quad 5,5,5,5,5,5,0$
$5,5,5,5,5,3,2$
$5,5,5,5,44.2$ Ans 6
$5,5,5,5,4,3,3$
$5.5,5,4,4,4,3$
$5,5,4,4,4,4,4$
Round IV
1 Cant have 3 odds (odd sum).
Smallest prime, 2, the is it
2 LCM of $2^{3.3}, 2.3 .5$, and $3^{2} .5$ is $2^{3} \cdot 3^{2} \cdot 5=360$
GLF is 3 . Ans $3.360=1080$
3. For $12 A 3 B$ to be divisible by 4 . $3 B$ must be 32 or 36, so $B=2$ or 6 .
For divisibility by $9,1+2+A+3+B$ must be a multiple of 9 .
If $B=2, A=1$ and if $B=6, A=6$.
But $A \neq B$. so $A=1$ only

TEAM ROUND
la. $1+2 \cdot 3-4+5 \cdot 6=1+6-4+30-33$
6. Get $3.3=9$, then $5,10,60$
2. Mull by 4 to get

$$
\begin{aligned}
-4 x-2(3 x-1)-1 & =5 x-8 \\
-6 x+2 & =9 x-7 \\
9=15 x & \Rightarrow x=\frac{3}{5}
\end{aligned}
$$

3.

$$
\begin{array}{ccccc}
3 & 4 & 3 & 5 \\
\frac{1}{4} & \frac{9}{13} & \frac{2}{5} & \frac{8}{13} & 0=1 \\
3 & 7 & 3 & 9 \\
\frac{4}{7} & \frac{6}{13} & \frac{6}{9} & \frac{4}{13} & \text { Ans } 4
\end{array}
$$

4. Try then all

$$
\begin{array}{ll}
2101_{3}=64=8^{2} & \text { Ans } \\
2101_{8}=1089=33^{2} & 3 \text { and } 8
\end{array}
$$

5. $\quad 7.5-5 \cdot \frac{1}{16}+(n-5) \frac{1}{16}=12$

$$
\begin{aligned}
& -\frac{5}{16}+\frac{n}{16}-\frac{5}{16}=4 \frac{1}{2} \\
& \frac{n}{16}=\frac{9}{2}+\frac{10}{16} \\
& n=72+10=82 \text { days }
\end{aligned}
$$

66 coins available, 3 are quarters.

$$
\begin{aligned}
& P(\text { quarter each time })=\frac{3}{6}=\frac{1}{2} \\
& P(\text { quite: both times })=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
\end{aligned}
$$

7. 2.4 .68 ends in 4.
4^{10} ends in 6 (calculation): 6
8. $\quad 6 p=9 \sigma \Rightarrow p=\frac{3}{2} \sigma$

$$
\begin{aligned}
& 4 b=13 m \Rightarrow m=\frac{4}{13} b \\
& 6 b=8 p \Rightarrow b=\frac{4}{3} p=\frac{4}{3}\left(\frac{3}{2} c^{-}\right)=20 \\
& m=\frac{4}{13}\left(2 c^{\circ}\right) \Rightarrow 13 m=8 \sigma
\end{aligned}
$$

